AUGUST 2022 EBS 143 GEOMETRY AND TRIGONOMETRY 1 HOUR 30 MINUTES

Candidate's Index	Number
Signature:	

UNIVERSITY OF CAPE COAST COLLEGE OF EDUCATION STUDIES SCHOOL OF EDUCATIONAL DEVELOPMENT AND OUTREACH INSTITUTE OF EDUCATION

COLLEGES OF EDUCATION FOUR-YEAR BACHELOR OF EDUCATION (B.ED) FIRST YEAR, END-OF-SECOND SEMESTER EXAMINATION, AUG/SEPT 2022

AUGUST 22, 2022

GEOMETRY AND TRIGONOMETRY

2:30 PM - 4:00 PM

SECTION B

Answer any TWO questions from this Section.

- a. The diagram below represents a running track with AFD and BEC being semi-circles and ABCD is a rectangle in which | AB | = | DC | = 70m, and | AD | = | BC | = 50m. Find:
 - i. The perimeter of the field
 - ii. The total area of the field

b. The diagram shows a circle with centre O and the points P, Q, R and S. The reflex angle at O is 204° , angle ORS = 54° , angle OPS = X° . Find the measure of the angle X.

2.

a. Using ruler and a pair of compasses only, construct

- i. A quadrilateral ABCD where |AB|=8cm, |AD|=6cm, |BC|=10cm, $|AD|=60^0$ and $|AD|=60^0$
- ii. The locus L₁ of points equidistant from BC and CD
- iii. The line L_2 from B perpendicular to L_1
- iv. Locate E, the point of intersection of L_1 and L_2
- v. Measure /DE/
- b. Find the equation of the line through the point of intersection of 2x + 3y = 5 and 3x y = 2 and which is parallel to 8y 2x = 28

3.

a. Copy and complete the table of values for $y = 5\sin x + 9\cos x f or 0^{\circ} \le 180^{\circ}$

l V	~ 0	200	600	000	1000	1500	1000
Δ	V	30	00	90"	120	100	180"
		100			^ ^		······
<u> </u>		10.5			-0.2		

- i. Using a scale of 2cm to 30^0 on the x axis and 2cm to 2 units on the y-axis, draw a graph of $y = 5 \sin x + 9 \cos x$ for $00 \le x \le 180^0$.
- ii. Use your graph to solve the equation:

(a).
$$5 \sin x + 9 \cos x = 0$$

$$(\beta). \ 5 \sin x + p \cos x = 2$$

iii. Using the graph, find the value of y when $x=45^{\circ}$.

- b. The diagram below shows a circle with centre O WITH POINTS A, B, C and D located on its circumference. Given that OBCD is a rhombus, angle BAD = p^0 and angle BCD = q^0 . Find:
 - i. p
 - ii. q

- 4.
- a. Using a scale of 2 cm to 2 units on both axes, draw on a sheet of graph paper two perpendicular axes, Ox and Oy for the interval $-8 \le x \le 10$ and $-8 \le y \le 10$.
- b. Draw on the same graph sheet, indicating clearly the co-ordinates of all vertices.
 - i. quadrilateral PQRS with coordinates P(1,2), Q(5,2), R(5,6) and S(1,6).
 - ii. the image $P_1Q_1R_1S_1$ of the quadrilateral **PQRS** under a reflection in the line y -axis where $P \to P_1$, $Q \to Q_1$, $R \to R_1$ and $S \to S_1$.
 - iii. the image $P_2Q_2R_2S_2$ of the quadrilateral PQRS under a translation by vector $\begin{pmatrix} 4 \\ -7 \end{pmatrix}$ where $P \to P_2$, $Q \to Q_2$, $R \to R_2$ and $S \to S_2$.
 - iv. the image $P_3Q_3R_3S_3$ of quadrilateral PQRS under anti-clockwise rotation through 180° about the origin where $P \to P_3$, $Q \to Q_3$, $R \to R_3$ and $S \to S_3$.
- c. What type of quadrilateral is PQRS?
- d. Determine the length of the diagonal PR of quadrilateral PQRS.